Утвержден ЛЯЮИ.467444.021РЭ-ЛУ ЛЯЮИ.467444.021-УЛ

ПРОМЫШЛЕННЫЙ КОМПЬЮТЕР НА БАЗЕ МИКРОПРОЦЕССОРА 1891ВМ11Я ПК-3

Руководство по эксплуатации ЛЯЮИ.467444.021РЭ

Инв. № дубл. Взам. инв. № Инв. № подл. Формат А4

Данное руководство по эксплуатации распространяется на промышленный компьютер на базе микропроцессора 1891ВМ11Я ПК-3 ЛЯЮИ.467444.021 (в дальнейшем – ПК-3). ЛЯЮИ.467444.021 Перв. примен. Контактная информация Изготовитель ПАО «ИНЭУМ им. И.С. Брука»: Почтовый адрес: Российская Федерация, 119334, Москва, ул. Вавилова, 24 Телефон: (495) 455-5781 Факс: (495) 455-5751 Электронная почта: <u>sales@ineum.ru</u> Для получения информации о других продуктах, выпускаемых ПАО «ИНЭУМ им.И.С.Брука», посетите наш Интернет-сайт по адресу: http://www.ineum.ru Техническая поддержка ПАО «ИНЭУМ им. И.С. Брука»: (495) 796-9451 Электронная почта технической поддержки: support@ineum.ru Авторское право Это Руководство не может быть скопировано, воспроизведено, переведено или конвертировано в любую электронную или машиночитаемую форму без предварительного письменного разрешения ПАО «ИНЭУМ им. И.С. Брука». Подп. и дата Инв. № дубл. Взам. инв. №

п. и дата Е									
Подп.	Изм.	Лист	№докум.	Подп.	Дата	ЛЯЮИ.467444.	021PЭ		
Ë.	Разраб	5.	Назарова			Промышленный компьютер	Лит.	Лист	Листов
Инв.№ подл.	Пров.	Пров. Крохоткин				на базе микропроцессора	$O O_1$	2	37
<u>№</u> 1						1891ВМ11Я.			
Інв.	Н.контр.		Жукова			ПК-3	ПАО «ИН	НЭУМ им.	И.С. Брука
Z	Утв.		Глухов			Руководство по эксплуатации			

Содержание

	Хранение	
	Распаковка	
	Транспортирование	
	ранспортирование, распаковка и хранение	
	Параметры входа в ОС Эльбрус	
	Управление температурным режимом	
	(ополнительная информация	
	Диалог загрузки с использованием файла boot.conf	
	Расширенный диалог	
	Основной диалог	
	Программа начального старта «BOOT» (BIOS) ПК-3	
	Грограмма начального старта «BOOT» (BIOS)	
	Замена батареи	
	Конфигурация ПК-3	
	Установка и демонтаж	
	Требования безопасности	
	становка	
	Требования к электропитанию	
	Интерфейсы ПК-3	
	Периферийные устройства	
	Возможности расширения	
	Особенности работы функциональных узлов	
4 d	ункциональное описание	
2 (сновные технические характеристики	

Подп. и дата

Инв. № дубл

Вз. инв. №

Подп. и дата

Инв. № подл.

Общие правила использования изделия

- Для сохранения гарантии продукт не должен подвергаться никаким переделкам и изменениям. Любые несанкционированные изменения и усовершенствования, кроме приведенных в настоящем Руководстве или полученных от службы технической поддержки ПАО «ИНЭУМ им. И.С. Брука» в виде набора инструкций по их выполнению, аннулируют гарантию.
- Это устройство должно устанавливаться и подключаться только к системам, отвечающим всем необходимым техническим и климатическим требованиям.
 Это относится и к диапазону рабочих температур конкретной версии исполнения изделия. Также следует учитывать температурные ограничения батарей, установленных в изделии.
- Выполняя все необходимые операции по установке и настройке, следуйте инструкциям только данного Руководства.
- Сохраняйте оригинальную упаковку для хранения изделия в будущем или для транспортировки в гарантийном случае. В случае необходимости транспортировать или хранить ПК-3 упакуйте его так же, как он был упакован при получении.
- Проявляйте особую осторожность при обращении с изделием и при распаковке. Действуйте в соответствии с инструкциями раздела 5.

Гарантийные обязательства

Подп. и дата

№ дубл

Инв.

윋

В3.

Подп. и дата

подл.

Инв. №

Изготовитель гарантирует соответствие изделия ПК-3 требованиям технических условий ЛЯЮИ.467444.021 ТУ «Промышленный компьютер на базе микропроцессора 1891ВМ11Я. ПК-3» при соблюдении Потребителем условий эксплуатации, транспортирования, хранения, установки и монтажа, установленных эксплуатационными документами. Изготовитель гарантирует, что в поставляемых им изделиях не проявятся дефекты изготовления и применённых материалов при соблюдении норм эксплуатации и обслуживания в течение установленного на данный момент гарантийного срока. Обязательство Изготовителя по этой гарантии состоит в бесплатном ремонте или замене любого дефектного электронного компонента, входящего в состав возвращённого изделия. Изделия, вышедшие из строя по вине Изготовителя в течение гарантийного срока, будут отремонтированы бесплатно. В иных случаях Потребителю будет выставлен счёт из расчёта текущих ставок оплаты труда и стоимости расходных материалов.

Право ограничения ответственности

Изготовитель не несет ответственности за ущерб, причиненный имуществу Потребителя вследствие отказа изделия в процессе его использования.

Гарантийный срок

Гарантийный срок на изделия фирмы изготовителя составляет 36 месяцев с даты продажи (если иное не предусмотрено договором поставки).

Изм.	Лист	№ докум.	Подп.	Дата

ЛЯЮИ.467444.021РЭ

Ограничение гарантийных обязательств

Вышеобъявленные гарантийные обязательства не распространяются:

на изделия (включая ПО), которые ремонтировались или в которые были внесены изменения персоналом, не представляющим Изготовителя. Исключение составляют случаи, когда Потребитель произвёл ремонт или внёс изменения в изделия строго в соответствии с инструкциями, предварительно согласованными и утверждёнными Изготовителем в письменной форме;

на изделия, вышедшие из строя из-за недопустимого изменения (на противоположный) зна-ка полярности источника питания, неправильной эксплуатации, транспортирования, хранения, установки, монтажа или несчастного случая.

Порядок возврата изделий для проведения ремонта

Последовательность действий при возврате изделий для проведения ремонта:

обратиться к Поставщику изделия за разрешением на возврат изделия;

приложить к возвращаемому изделию акт установления неисправности по форме, принятой у Потребителя, с указанием перечня обстоятельств и признаков неисправности;

поместить изделие в потребительскую тару Изготовителя (антистатическую упаковку (пакет) и картонную упаковку (коробку), в которой изделие находилось при поставке Потребителю. При отсутствии антистатической упаковки Потребитель лишается права на гарантийное обслуживание в одностороннем порядке;

все расходы по доставке изделия Поставщику возлагаются на Потребителя.

Подп. и дата							
Инв. № дубл							
Вз. инв. №							
Подп. и дата							
Инв. № подл.	 Изм.	Лист	№ докум.	Подп.	Дата	ЛЯЮИ.467444.021РЭ 5	ET_

1 Введение

ПК-3 представляет собой компьютер промышленного назначения, выполненный в облегченном корпусе для использования в применениях, не требующих высоких степеней защиты от внешних воздействий.

ПК-3 предназначен для предоставления потребителям высокоинтегрированного решения на основе микропроцессорной платформы российского производства для использования в системах реального времени, контроля производства, высокоскоростного сбора и обработки данных, эксплуатируемых и требующих высокой производительности, надежности и гибкости в поддержке различных интерфейсов расширения.

 Π K-3 имеет три модификации отличающиеся входящими в его состав модулями процессора М Π 16:

ПК-3 ЛЯЮИ.467444.021 - модуль процессора МП16 ЛЯЮИ.467144.078

ПК-3.1 ЛЯЮИ.467444.021-01 - модуль процессора МП16.4 ЛЯЮИ.467144.078-04

ПК-3.2 ЛЯЮИ.467444.021-02 - модуль процессора МП16.6 ЛЯЮИ.467144.078-06

ПК-3 имеет следующую структуру каналов ввода-вывода:

- 3 Ethernet контроллера 10/100/1000 Mbit/s (выведены на корпус);
- 6 портов USB 2.0 с поддержкой скоростей HS, FS и LS (выведены на корпус);
- 1 порт SATA (на плате Модуля ПК-3, внутри корпуса);
- 1 порт mSATA (на плате Модуля ПК-3, внутри корпуса);
- 2 порта RS-232C (выведены на корпус);
- 2 изолированных порта RS-485/422 (выведены на корпус);
- аудио интерфейс AC97 (микрофон + наушники, выведены на корпус);
- 2 видеовыхода HDMI (выведены на корпус);
- 8 линий ввода/вывода общего назначения (IO) (выведены на корпус).

Индикацию состояния изделия обеспечивают четыре светодиодных индикатора красного и зеленого цветов, управляемые программно.

Главным отличием изделия от аналогов является использование российских микропроцессора и контроллера периферийных интерфейсов вместо процессоров Intel, AMD, Freescale, Atmel и т.п. Это позволяет повысить информационную защищенность ПК-3 и использовать его в ответственных приложениях, важных для национальной безопасности.

Инв. № подл. и дата Вз. инв. № Инв. № дубл Подп. и дата

Изм. Лист № докум.

Подп.

Дата

ЛЯЮИ.467444.021РЭ

- Процессор 1891ВМ11Я (Эльбрус-1С+), 1 ядро, тактовая частота 1000 МГц;
- Оперативная память − DDR3 SDRAM с ECC 8 ГБайта, напаянная;
- Видео два HDMI (разрешение до 1920x1440) выведены на корпус;
- FLASH BIOS 64 Mbit SPI-Flash;
- Интерфейс SATA III SSD InnoDisk 16 Гбайт, два интерфейса на плате, внутри корпуса;
- 3 порта LAN Ethernet 10/100/1000 Мбит/с выведены на корпус;
- 6 портов USB 2.0, выведены на корпус;
- 2 порта RS-232C, выведены на корпус;
- 2 порта RS-485/422, с гальванической изоляцией, прочностью не менее 500В в течение 1 минуты, выведены на корпус;
- аудио интерфейс AC97 (микрофон + наушники), выведены на корпус;
- 8 каналов IO, стандарт TTL, выведены на корпус
- Память NVRAM 128 кбит;
- Часы реального времени с питанием от литиевой батареи;
- Сторожевой таймер внутренний, с возможностью программного управления;
- Индикация четыре программно-управляемых светодиода;
- Программная совместимость с ОС «Эльбрус» с поддержкой реального времени;
- Электропитание от источника постоянного тока (12 ± 0.6) В;
- Потребляемая мощность не более 40 Вт;
- Рабочая температура от минус 40 до плюс 50 °C;
- Класс защиты от внешних воздействий IP40;
- Влажность до 80% без конденсации;
- Устойчивость к синусоидальной вибрации 1g в диапазоне частот от 5 до 500 Гц;
- По уровню электромагнитных излучений ПК-3 соответствует требованиям для оборудования класса «А» по ГОСТ Р 51318.22;
- Средняя наработка на отказ не менее 100 000 часов;
- Macca 1,7 кг;
- Габаритные размеры: 197 x 191 x 66, мм (без крепежных кронштейнов);

197 х 291 х 66, мм (с установленными кронштейнами)

Внешний вид ПК-3 показан на рисунке 2.1.

Рисунок 2.1 - Промышленный ПК-3 (вид спереди)

						Лист
					ЛЯЮИ.467444.021РЭ	
Изм.	Лист	№ докум.	Подп.	Дата		

Расположение основных компонентов на печатной плате ПК-3 показано на рисунках 2.2 (вид сверху) и 2.3 (вид снизу).

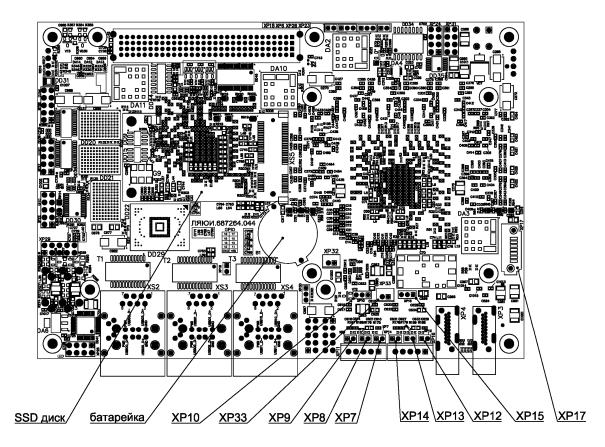


Рисунок 2.2 - Расположение основных компонентов ПК-3 (вид сверху)

Подп. и дата

№ дубл

ષ્ટ્ર

B3.

Подп. и дата

Инв. № подл.

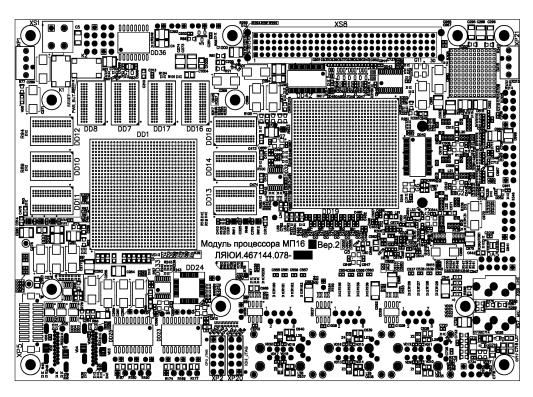


Рисунок 2.3 - Расположение основных компонентов ПК-3 (вид снизу)

Расположение интерфейсных разъемов на корпусе ПК-3 показано на рисунках 2.1 и 2.4. Цоколевка интерфейсных разъемов приведена в соответствующих разделах данного Руковод-

							Лист		
ļ						ЛЯЮИ.467444.021РЭ			
	Изм.	Лист	№ докум.	Подп.	Дата				

ства.

Подп. и дата

Инв. № дубл

ષ્ટ્ર

Вз. инв.

Подп. и дата

Инв. № подл.

Рисунок 2.4 - Расположение интерфейсных разъемов на корпусе ПК-3 (вид сзади)

Примечание - Рекомендуется во входных цепях электропитания ПК-3 использовать фильтры синфазных и парафазных помех, а также разрядники, защищающие от импульсных перенапряжений.

Габаритный чертеж ПК-3 с крепежными кронштейнами ЛЯЮИ.752662.008 приведен на рисунке 2.5

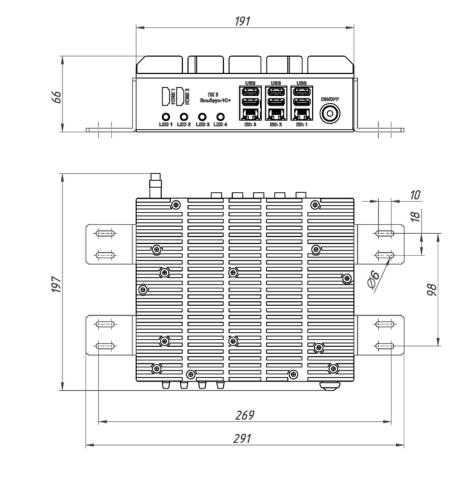


Рисунок 2.5 - Габаритный чертеж ПК-3

Изм.	Лист	№ докум.	Подп.	Дата	

3 Комплектность

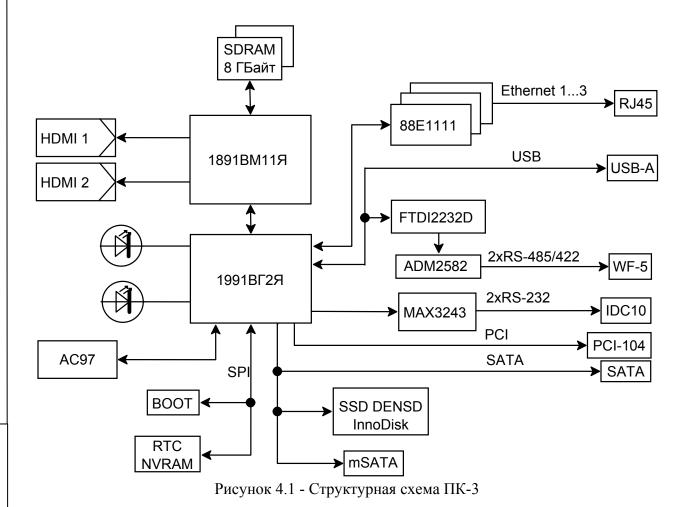

Комплект поставки ПК-3 приведен в таблице 3.1.

Таблица 3.1 - Комплект поставки ПК-3

Обозначение изделия	Наименование изделия	Назначение разъема	Количество
ЛЯЮИ.4674444.021	Промышленный компьютер на базе микропроцессора 1891ВМ11Я ПК-3	_	1
DS1110-01-3	Розетка 3 pin (питание)	DC 12 V (питание)	1
ЛЯЮИ.4674444.021ПС	Промышленный компьютер на базе микропроцессора 1891ВМ11Я ПК-3 Паспорт	_	1

Подп. и дата						
Под						
Инв. № дубл						
ВЗ. ИНВ. № — I						
ПОДП. И ДАТА						
подрі.						
инв. ме подл.	Изм.	Лист	№ докум.	Подп.	Дата	ЛЯЮИ.467444.021РЭ

Структурная схема процессорного модуля ПК-3 показана на рисунке 4.1.

4.1 Особенности работы функциональных узлов

- Процессор 1891ВМ11Я

Подп. и дата

№ дубл

ષ્ટ્ર

инв.

В3.

Подп. и дата

подл.

Инв. №

Микропроцессор 1891ВМ11Я – высокопроизводительный экономичный микропроцессор для встраиваемых решений, изготовленный по технологии 40 нм. Он содержит одно ядро на архитектуре «Эльбрус» на базе широкого командного слова (VLIW) с тактовой частотой ядра 1000 МГц и графическое ядро с тактовой частотой 800 МГц с поддержкой OpenGL 2.1 и OpenCL 1.1. В процессор интегрирован двухканальный контроллер памяти DDR3-1600 и канал ввода-вывода для подключения южного моста КПИ-2. Микропроцессор разработан и производится АО «МЦСТ».

Основные технические характеристики микропроцессора 1891BM11Я приведены в таблице 4.1.

КПИ2 1991ВГ2Я

Высокоинтегрированный контроллер периферийных интерфейсов, включающий в себя стандартную периферию.

Лист 11

- SDRAM

					ЛЯЮИ.467444.021РЭ
Изм.	Лист	№ докум.	Подп.	Дата	

На плату модуля запаяно 8GB DDR3 SDRAM с ECC. Установка модуля расширения памяти не предусмотрена.

Таблица 4.1 - Технические характеристики микропроцессора 1891ВМ11Я.

Наименование параметра	Значение
Тактовая частота	1000 МГц
Число ядер СРИ	1
Пиковая производительность микросхемы, Gflops	24
(32 разряда, одинарная точность)	
Кэш-память 1 уровня (на ядро, данных + команд)	64 КБ+ 128 КБ
Кэш-память 2 уровня	2048 КБ
Число ядер GPU	1
Пиковая производительность графического ядра,	28
Gflops (32 разряда, одинарная точность)	
Пропускная способность канала ввода-вывода	16ГБ/сек
(дуплекс)	
Тип памяти	DDR3-1600 ECC
Количество каналов памяти	2
Скорость обмена с памятью	51,2 ГБ/с
Технологический процесс	40 нм
Корпус	HFCBGA/1156
Площадь кристалла	122 mm^2
Количество транзисторов	375 млн
Температурный диапазон	от минус 60 до +85 °C
Максимальная потребляемая мощность	7 B _T

- BOOT

Для хранения BOOT-программы (BIOS) используется микросхема Flash 64 Mbit на шине SPI

- RTC

Часы реального времени подключены по шине SPI. Работоспособность часов при отключенном питании обеспечивается литиевой батарейкой, устанавливаемой на плату модуля. Настройки BIOS Setup (BOOT) сохраняются в NVRAM.

- NVRAM

№ дубл

ષ્ટ્ર

B3.

Инв. № подл.

Энергонезависимая память 128 Кбит, используется для хранения настроек BIOS SETUP (BOOT).

– Ethernet контроллер КПИ

Модуль имеет три Gigabit Ethernet интерфейса, реализованных на связке КПИ2+РНҮ Marvell 88E1111.

- USB 2.0

Модуль имеет 6 каналов USB 2.0.

- SATA III

Один интерфейс для подключения накопителей выведен на разъем SATA. Второй используется для подключения запаянного на плату однокристального SSD-накопителя емкостью 16 Гбайт. Третий выведен на разъем стандарта mSATA.

					1		
-							Лист
						ЛЯЮИ.467444.021РЭ	12
	Изм.	Лист	№ докум.	Подп.	Дата		
				•			

Два порта HDMI предназначены для подключения мониторов, поддерживаемые максимальные разрешения (1920x1440 60 Hz).

- Audio AC97

Интерфейс обеспечивает подключение к ПК-3 микрофона и линейный аудио-выход.

- RS-232C

Два канала RS-232C выведены на корпус.

- RS-485/422

Два канала RS-485/422 реализованы на микросхеме преобразователе интерфейсов USB <-> UART FTDI2232D. Гальваническая изоляция обеспечивается применением изолированного формирователя уровней ADM2582.

- SPI

Интерфейс реализован в КПИ. Поддерживается микросхема NVRAM (расположена на плате). Максимальная тактовая частота – 25 МГц.

- Индикация

Светодиодные индикаторы выведены на переднюю панель. Описание индикаторов приведено в таблице 4.2:

Таблица 4.2 – Описание индикаторов

Мнемоника	Контакт GPIO	Описание
LED1	GPIO_7	Пользовательский программно управляемый, зеленый.
LED2	GPIO_8	Пользовательский программно управляемый, красный.
LED3	GPIO_9	Пользовательский программно управляемый, зеленый.
LED4	GPIO_10	Пользовательский программно управляемый, красный.

- Watchdog

Таймер аппаратного сброса реализован в КПИ. Управление watchdog осуществляется стандартными средствами ОС Эльбрус.

- IO

Подп. и дата

№ дубл

Инв.

윋

В3.

Подп. и дата

подл. ષ્ટ્ર

Линии ввода/вывода общего назначения.

- Сброс и мониторинг питания

Сигнал сброса микропроцессора формируется от следующих источников:

- от схемы контроля питания при включении;
- от сторожевого таймера;
- программно по команде из ОС.

4.2 Возможности расширения

Текущее исполнение ПК-3 не предусматривает возможностей расширения.

4.3 Периферийные устройства

Часы реального времени (RTC)

В состав модуля входят часы реального времени с питанием от батареи. Они выполняют функции хронометрирования, программируемую функцию выдачи периодического прерывания и календарь на 100 лет.

Доступ к RTC осуществляется при помощи утилиты ОС Эльбрус:

Изм.	Лист	№ докум.	Подп.	Дата	

ЛЯЮИ.467444.021РЭ

hwclock

Энергонезависимая память (NVRAM)

На плате находится энергонезависимая последовательная память NVRAM (16 Кбайт) для хранения служебной информации.

Доступ к NVRAM осуществляется средствами ОС «Эльбрус»

/sys/class/spi master/spi0/device/spi0.1/nvram

Контроллеры Ethernet

ПК-3 имеет три интерфейса Ethernet.

Взаимодействие с интерфейсами происходит через имена eth0, eth1 и eth2.

Настройка параметров интерфейсов Ethernet осуществляется средствами ОС Эльбрус в соответствии с принятыми в ОС Linux правилами.

USB

ПК-3 имеет шесть каналов интерфейса USB.

SATA

ПК-3 имеет три канала интерфейса SATA.

Первый канал используется для взаимодействия с припаянным на печатную плату ПК-3 твердотельным накопителем (SSD) емкостью 16 Гбайт, использующимся в качестве системного диска.

Второй канал выведен на стандартный разъем SATA, установленный на печатной плате.

Третий канал выведен на разъем mSATA, установленный на печатной плате.

Доступ к устройствам SATA из ОС Эльбрус осуществляется по именам:

- для встроенного SSD: /dev/sda
- для внешнего диска SATA: /dev/sdb
- для внешнего диска mSATA: /dev/sdc

Video

№ дубл

윋

B3.

Подп. и дата

Инв. № подл.

Видео подсистема ПК-3 построена на встроенном видеоконтроллере процессора Эльбрус-1С+. Обеспечивается вывод видеоизображения на мониторы с HDMI. Возможно подключение двух мониторов одновременно. Максимальное разрешение выводимого изображения — 1920х1440 точек при частоте смены кадров 60 Гц, 16 млн цветов.

Audio

Аудиоподсистема ПК-3 построена на интегрированном контроллере, содержащем 1 вход для микрофона и 1 линейный выход.

RS-232

На разъемы на корпусе ПК-3 выведены два канала интерфейса RS-232.

						-
	Изм.	Лист	№ докум.	Подп.	Дата	
	110	011101	<u> </u>	-77	дата	-

ЛЯЮИ.467444.021РЭ

Первый канал используется Программой начальной загрузки ВООТ и ОС Эльбрус в качестве системной консоли. Подключение каких-либо периферийных устройств к этому каналу не рекомендуется!

Второй канал может быть использован для взаимодействия с внешними устройствами пользователя. В зависимости от конфигурации пользовательского программного и аппаратного обеспечения может потребоваться конфигурация последовательного канала средствами программы ВООТ в соответствии с разделом 6.

Доступ к каналам RS-232 из программ, работающих в среде ОС Эльбрус, осуществляется по именам:

– первый канал: /dev/ttyS0– второй канал: /dev/ttyS1

RS-485/422

На разъемы на корпусе ПК-3 выведены два канала интерфейса RS-485/422.

Интерфейс реализован на основе контроллера-преобразователя USB <-> UART.

Поддерживаются двухпроводный полудуплексный режим (RS-485) с приемом «эхо» или без «эхо» и четырехпроводный режим (RS-422) с поддержкой «мульти-мастер». Конфигурация каналов и подключение/отключение «терминаторов» производятся с помощью перемычек, установленных на верхней стороне платы, в соответствии с рисунком 2.2 Расположение основных компонентов ПК-3 (вид сверху). Описание установки перемычек приведено в разделе 5.

Для работы каналов RS485 необходимо присутствие в системе модуля ядра ftdisio (modprobe ftdisio). Настройка модулей ядра для автоматического запуска осуществляется в ОС «Эльбрус» в соответствии с правилами Debian.

Доступ к каналам RS-485/422 из программ, работающих в среде ОС Эльбрус, осуществляется по именам:

– первый канал: /dev/ttyUSB0– второй канал: /dev/ttyUSB1

Индикация

Подп. и дата

№ дубл

ષ્ટ્ર

Вз. инв.

Подп. и дата

Инв. № подл.

На корпусе ПК-3 установлены светодиоды красного и зеленого цветов, доступные для управления пользовательскими программами.

Управление светодиодами осуществляется через механизм sysfs /sys/class/gpio ОС Эльбрус. Зеленым светодиодам соответствуют GPIO_7 и GPIO_9, красным – GPIO_8 и GPIO_10.

Инициализация светодиодов:

echo 7 > /sys/class/gpio/export

echo 8 > /sys/class/gpio/export

echo 9 > /sys/class/gpio/export

echo 10 > /sys/class/gpio/export

echo out > /sys/class/gpio/gpio7/direction

echo out > /sys/class/gpio/gpio8/direction

					Γ
Изм.	Лист	№ докум.	Подп.	Дата	

```
есho out > /sys/class/gpio/gpio10/direction

включение светодиодов:

есho 0 > /sys/class/gpio/gpioX/value — включить светодиод, где X — номер GPIO (от 7 до 10)

Выключение светодиодов:

есho 1 > /sys/class/gpio/gpioX/value — выключить светодиод где X — номер GPIO (от 7 до 10)

По умолчанию инициализация светодиодов происходит после загрузки ОС Эльбрус в скрипте /etc/userinit. После успешной загрузки и запуска ОС Эльбрус загорается зеленый светодиод. Красный светодиод загорается на время работы тестов из пакета СТДП ОС Эльбрус при условии запуска комплексного пакета тестов и гаснет после успешного окончания тестов. Тесты запускаются оператором в ручном режиме.

Сторожевой таймер (Watchdog)
```

Сторожевой таймер реализован в КПИ2 как устройство на шине PCI. Включение сторожевого таймера и управление им осуществляется в ОС «Эльбрус» через устройство /dev/watchdog. Принципы работы с устройством /dev/watchdog полностью соответствуют общепризнанным принципам для ОС Linux и описаны в единой документации на ядро ОС Linux kernel.org в соответствующем разделе (doc/Documentation/watchdog/watchdog-api.txt).

Вводы-выводы общего назначения (ІО)

ПК-3 имеет возможность осуществлять ввод-вывод до восьми дискретных сигналов, доступных для пользовательских программ.

Тип программно управляемых выводов общего назначения — LVCMOS-3.3 (совместим с питанием 5В). После сброса все разряды являются входами, в процессе работы каждый разряд может быть индивидуально назначен выходом.

Управление сигналами осуществляется через механизм sysfs /sys/class/gpio ОС Эльбрус. IO0 соответствует GPIO_11, IO1 – GPIO_12, IO2 – GPIO_13 - IO7 – GPIO_18.

Инициализация сигналов ввода-вывода (на примере IO0):

echo 11 > /sys/class/gpio/exportecho out > /sys/class/gpio/gpio11/direction— настройка как выводили— настройка как вводecho in > /sys/class/gpio/gpio11/direction— настройка как вводecho 0 > /sys/class/gpio/gpio11/value— вывод логического «0»echo 1 > /sys/class/gpio/gpio11/value— вывод логической «1»cat /sys/class/gpio/gpio11/value— чтение состояния ввода

Изм.	Лист	№ докум.	Подп.	Дата	

ЛЯЮИ.467444.021РЭ

Лист 16

дубл Подп. и дата

Инв. № дубл

Вз. инв. №

Подп. и дата

Инв. № подл.

В ПК-3 используется одна литиевая батарея на 3,0 В для питания часов реального времени. Используйте RENATA CR2032 или совместимые модели указанные в разделе 5. Возможна работа без батареи; без батареи питания данные часов могут быть недостоверными.

Устройства на локальной шине SMBus

ПК-3 имеет шину SMBus, обеспечивающую функции мониторинга системы. Эта шина использует интерфейс I2C, к ней подключена микросхема температурного мониторинга CPU, КПИ2 и печатной платы ПК-3.

Температурный монитор может по запросу предоставлять информацию программным средствам контроля текущего состояния системы, это обеспечивает работу модуля в безопасном температурном режиме. Доступ к информации о температуре осуществляется через механизм sysfs /sys/class/hwmon ОС Эльбрус. Для работы температурного монитора необходимо присутствие в системе модуля ядра lm63 (modprobe lm63). Настройка модулей ядра для автоматического запуска осуществляется в ОС «Эльбрус» в соответствии с правилами Debian.

Для автоматизации выдач показаний температуры в консоль в ОС присутствует соответствующий скрипт, позволяющий получать данные о температуре процессора и КПИ-2.

Чтение информации о температуре:

/mcst/bin/CNTR TMPRT -da -t1

 Γ де параметр –t указывает интервал времени для повторного запроса. В данном случае – 1 с.

4.4 Интерфейсы ПК-3

Ethernet

Интерфейсы Ethernet выведены на стандартные разъемы RJ45, нумерация каналов подписана на корпусе ПК-3. Разъемы дают возможность использовать интерфейсы 10Base-T, 100-Base-TX и 1000Base-T.

Назначение контактов разъемов приведено в таблице 4.3.

Таблица 4.3 - Назначение контактов разъемов Ethernet

	Стандарт Ethernet			Стандарт Ethernet		
Контакт	10Ba	ase-T	100Ba	se-TX	1000E	Base-T
	I/O	Сигнал	I/O	Сигнал	I/O	Сигнал
1	О	TX+	О	TX+	I/O	DA+
2	О	TX-	О	TX-	I/O	DA-
3	I	RX-	I	RX-	I/O	DB+
4	_	_	_	_	I/O	DC+
5	_	_	_	_	I/O	DC-
6	I	RX+	I	RX+	I/O	DB-
7	_	_	_	_	I/O	DD+
8	_	_	_	_	I/O	DD-

Изм.	Лист	№ докум.	Подп.	Дата

ЛЯЮИ.467444.021РЭ

Лист 17

Подп. и дата

Инв. № дубл

га Вз. инв. №

Инв. № подл.

USB

Шесть портов интерфейса USB выведены на стандартные разъемы USB 2.0 типа A, совмещенные с разъемами Ethernet. Порты поддерживают режимы high-speed, full-speed, and low-speed. USB 2.0 в режиме high-speed позволяет передавать данные со скоростью до 480 Мбит/с, это в 40 раз быстрее, чем в режиме full-speed (USB 1.1).

К каждому порту допускается подключать одно периферийное устройство USB. Для подключения к ПК-3 большего количества устройств необходимо использовать внешний концентратор.

Источник питания USB защищен автоматическим предохранителем на 500 мА..

Назначение контактов разъема USB приведено в таблице 4.4.

Чертеж расположения контактов разъема USB приведен на рисунке 4.2.

Таблица 4.4 - Назначение контактов разъема ХР6

Контакт	Цепь	Назначение
1	USB1_VCC	Питание порта USB
2	USB1_D-	Дифференциальный сигнал USB-
3	USB1_D+	Дифференциальный сигнал USB+
4	USB1_GND	«Земля» порта USB

1 2 3 4

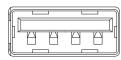


Рисунок 4.2 - Расположение контактов разъема USB

RS-232

Интерфейсы RS-232 выведены на 9-контактные разъемы D-Sub (вилки) выведенные на заднюю стенку корпуса в соответствии с рисунком 2.4.

Назначение контактов разъемов приведено в таблице 4.5.

Чертеж расположения контактов разъемов приведен на рисунке 4.3.

Таблица 4.5 - Назначение контактов разъемов RS-232

•	1
Контакт	Назначение
1	CD
2	RXD
3	TXD
4	DTR
5	GND
6	DSR
7	RTS
8	CTS
9	RI

подл.	
Š	
Инв.	

№ дубл

ષ્ટ્ર

B3.

Подп. и дата

Изм	Лист	№ докум.	Подп.	Лата

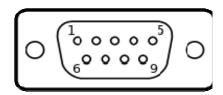


Рисунок 4.3 - Расположение контактов в разъемах D-Sub (RS-232, RS485/422)

RS-485/422

Интерфейсы RS-485/422 выведены на 9-контактные разъемы D-Sub, выведенные на переднюю стенку корпуса согласно рисунку 2.1.

Назначение контактов разъемов приведено в таблице 4.6.

Чертеж расположения контактов разъемов приведен на рисунке 4.3.

Таблица 4.6 - Назначение контактов разъема RS-485/422

	1
Контакт	Назначение
1	TXD-/D-
2	TXD+/D+
3	RXD+
4	RXD-
5	IGND
6	_
7	_
8	_
9	_

Video

Для вывода видеосигналов используются разъемы HDMI тип A, выведенные на переднюю стенку корпуса в соответствии с рисунком 2.1.

Назначение и расположение контактов разъемов приведено на рисунке 4.4.

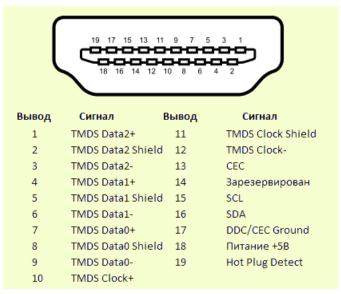


Рисунок 4.4 - Назначение и расположение контактов разъемов НДМІ

Audio

Изм.	Лист	№ докум.	Подп.	Дата	

ЛЯЮИ.467444.021РЭ

Лист 19

Подп. и дата

Инв. № дубл

Вз. инв. №

Подп. и дата

Инв. № подл.

Ю

ПК-3 имеет возможность подключения восьми внешних дискретных сигналов ввода/вывода (IO). Сигналы должны иметь амплитуду от 0 до 5 В.

Вводы/выводы не имеют гальванической развязки и электростатической защиты. Поэтому не рекомендуется использовать их для подключения длинных кабелей и сигналов от промышленного оборудования без дополнительной внешней развязки.

Для подключения сигналов IO используется 15-контактный разъем D-Sub (розетка), выведенный на заднюю стенку корпуса в соответствии с рисунком 2.4.

Назначение контактов разъема приведено в таблице 4.7.

Чертеж расположения контактов разъема приведен на рисунке 4.5.

Таблица 4.7 - Назначение контактов разъема IO

Контакт	Назначение
1	+5
2	IO0
3	IO2
4	IO4
5	IO6
6	_
7	_
8	_
9	GND
10	IO1
11	IO3
12	IO5
13	IO7
14	_
15	_
	_ _

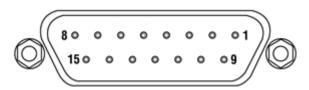


Рисунок 4.5 - Расположение контактов разъема IO

SATA

Подп. и дата

№ дубл

Инв.

윋

В3.

Подп. и дата

Инв. № подл.

ПК-3 имеет один внутренний интерфейс SATA, который может быть использован для подключения дополнительного дискового накопителя. Рекомендуется использовать твердотельные накопители форм-фактора 2,5'. Дополнительный дисковый накопитель может быть установлен только при снятой верхней крышке – радиаторе. Используется при начальной установке ОС и при наладке и ремонте ПК-3. Не рекомендуется использовать при штатной эксплуатации. Подключение внешнего дискового накопителя производится интерфейсным кабелем

			_		
					ЛЯЮИ.467444.021РЭ
Изм.	Лист	№ докум.	Подп.	Дата	

SATA к разъему XP17 и кабелем питания ЛЯЮИ.685692.003 к разъему XP33 на печатной плате ПК-3

ПК-3 имеет один внутренний интерфейс mSATA. Подключение дополнительного диска формата microSATA производится к разъему XS5, установленному на обратной стороне платы в соответствии с рисунком 2.3.

4.5 Требования к электропитанию

Питающее напряжение +12 В.

Необходимо принимать во внимание требования, существенные для обеспечения стабильности и надежности работы ПК-3. В таблице ниже приведены величины максимально допустимых напряжений на линиях питания, превышение которых может привести к повреждению ПК-3. Источники питания, с которыми будет использоваться ПК-3, должны быть проверены на предмет соответствия этим требованиям.

Рекомендуется в цепях электропитания ПК-3 использовать фильтры синфазных и парафазных помех, а также разрядники, защищающие от импульсных перенапряжений. Требования к электропитанию приведены в таблице 4.8.

Таблица 4.8 – Требования к электропитанию.

Напряжение	Минимальное	Максимальное	Ток потребления МАХ
(B)	(B)	(B)	(A)
+12	11,4	12,6	3,2

Питание подключается к разъему DC на корпусе ПК-3.

Назначение контактов разъема приведено в таблице 4.9.

Чертеж расположения контактов разъема приведен на рисунке 4.6.

Таблица 4.9 - Назначение контактов разъема DC

	-
Контакт	Назначение
1	+ 12 B
2	GND
3	<u></u>

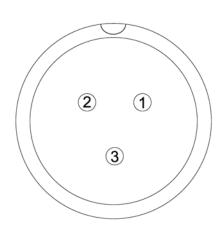


Рисунок 4.6 - Расположение контактов разъема DC *

* Примечание - Вид со стороны монтажа, подсоединяемого снаружи ответного разъема (Розетка DS1110-01-3). Распайку проводов на разъем вести строго по данному рисунку, т.к. нумерация контактов, указанных на разъеме, может не совпадать!

Изм.	Лист	№ докум.	Подп.	Дата

ЛЯЮИ.467444.021РЭ

Лист 21

инв. № Инв. № дубл Подп. и дата

Вз. инв. №

Подп. и дата

в. № подл.

5 Установка

ПК-3 легко устанавливать. При этом необходимо строго соблюдать приведенные ниже правила и процедуры для того, чтобы избежать повреждения ПК-3, подключаемого оборудования, а также травм персонала.

5.1 Требования безопасности

При обращении с ПК-3 следуйте требованиям безопасности, описанным в данном разделе. ПАО «ИНЭУМ им. И.С. Брука» не несет ответственности за любые повреждения, возникшие в результате несоблюдения этих требований.

Внимание!

Выключите источник питания перед подключением ПК-3 и/или внешнего оборудования. Нарушение этого правила может создать угрозу Вашему здоровью и жизни, а также привести к повреждению ПК-3 или внешнего оборудования.

Время запуска источника питания не должно превышать 200 миллисекунд. После выключения источника не допускается повторное включение ПК-3 ранее, чем через 10 секунд.

ПК-3 имеет элементы, чувствительные к воздействию электростатических зарядов. Во избежание повреждения модуля соблюдайте меры предосторожности:

- снимите с одежды и тела статический заряд;
- не прикасайтесь к электронным компонентам и контактам разъемов ПК-3.

5.2 Установка и демонтаж

Будьте осторожны при обращении с ПК-3. Корпус ПК-3 выполняет роль радиатора охлаждения и может сильно нагреваться. Не прикасайтесь к корпусу при работе ПК-3.

ПК-3 **запрещено** накрывать тканью или какими-либо иными материалами и предметами, так как это будет препятствовать отводу тепла от ПК-3 и может привести к его повреждению!

Порядок установки

Для установки ПК-3 выполните следующие действия:

- убедитесь, что соблюдены требования безопасности, изложенные выше;
- перед установкой убедитесь, что ПК-3 имеет необходимую конфигурацию. Информация по конфигурированию периферийных устройств ПК-3 приведена ниже в последующих главах данного раздела;
- установите ПК-3 на горизонтальную или вертикальную поверхность. При вертикальной установке обратите внимание, что ребра радиатора на верхней крышке ПК-3 должны иметь вертикальную ориентацию. Убедитесь, что ПК-3 надежно закреплен;
- распаяйте кабели от внешнего оборудования и источника питания в соответствии с разделом 4.4. Ответные разъема питания входит в комплект поставки;
- убедитесь, что источник питания выключен;
- аккуратно подключите кабели от источника питания и внешнего оборудования к разъемам на корпусе ПК-3. Убедитесь, что все подсоединенные кабели надежно зафиксированы;
- включите источник питания;

Изм.	Лист	№ докум.	Подп.	Дата	

ЛЯЮИ.467444.021РЭ

Лист 22

Подп. и дата Вз. инв. № Инв. № дубл Подп. и дата

№ подл.

- через 45-60 секунд должен загореться зеленый светодиод, что сигнализирует об успешной загрузке ОС Эльбрус и готовности ПК-3 к работе.

Порядок демонтажа

Для отключения ПК-3 выполните следующие действия:

- убедитесь, что соблюдены требования безопасности, изложенные выше;
- убедитесь, что источник питания выключен;
- аккуратно отсоедините от ПК-3 все кабели;
- снимите ПК-3 с поверхности, на которой он установлен;
- упакуйте ПК-3 в транспортировочную тару.

5.3 Конфигурация ПК-3

ПК-3 имеет два вида конфигурации: аппаратную и программную.

Аппаратная конфигурация включает в себя:

- установку дополнительного жесткого mSATA диска;
- установку режимов работы портов RS-485/422 при помощи перемычек.

Программная конфигурация включает в себя:

- выбор «загрузочного» дискового накопителя;
- установку IP-адресов интерфейсов Ethernet;
- сброс настроек BIOS к заводским установкам.

Работы по аппаратному конфигурированию ПК-3 и установке батареи производятся на демонтированном ПК-3. Программное конфигурирование — на установленном.

Установка дополнительного жесткого диска

- Убедитесь, что соблюдены требования безопасности, изложенные выше.
- С помощью крестовой отвертки открутите 12 винтов на дне корпуса, крепящих нижнюю крышку корпуса и печатную плату ПК-3 и снимите нижнюю крышку корпуса.
- Осторожно установите жесткий диск в разъем XS5. Поддерживаются диски стандарта mSATA. Старайтесь не сдвигать печатную плату с места, чтобы не повредить теплопроводящие прокладки между платой и верхней крышкой корпуса.
- Установите нижнюю крышку корпуса, убедитесь, что все отверстия совпали со стойками крепления печатной платы, скрепите корпус винтами.

Установка режимов работы портов RS-485/422

Выбор и установка режимов работы портов производится при помощи перемычек на печатной плате ПК-3 в соответствии с рисунками 2.2, 5.1

Назначение перемычек указано в таблице 5.1.

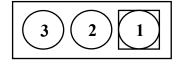


Рисунок 5.1 - Расположение контактов перемычек XP10 и XP15 (вид сверху)

					Ī
			-		
Изм.	Лист	№ докум.	Подп.	Дата	

№ дубл

윋

B3.

№ подл.

ЛЯЮИ.467444.021РЭ

Таблица 5.1 - Перемычки выбора режима работа портов RS-485/422

	Порт							
Режим	COM3				COM4			
	XP7	XP8	XP9	XP10	XP12	XP13	XP14	XP15
RS-485 (двухпровод-		+	+			+	+	
ный)		'	ı			1	'	
RS-422 (четырехпро-								
водный)		_	_			_	_	
«Эхо» включено				- 2-3				- 2-3
«Эхо» выключено				+ 1-2				+ 1-2
«Терминатор» вклю-	+				+			
чен	'				1			
«Терминатор» выклю-					_			
чен	_				_			

^{+ -} перемычка установлена по умолчанию

Выбор «загрузочного» дискового накопителя

Изменить выбранный «загрузочный» дисковый накопитель, и также изменить параметры загрузки ОС, можно с помощью команды 'с' Основного диалога Программы начального старта (BIOS).

Установка IP-адресов интерфейсов Ethernet

Установка IP-адресов интерфейсов Ethernet осуществляется в соответствии с правилами конфигурирования сетевых интерфейсов ОС Linux Debian и может быть выполнено различными способами: корректировкой текстовыми редакторами конфигурационных файлов (файлы в каталоге /etc/sysconfig/network-devices/), утилитами текстового режима или утилитами графического режима. После изменения настроек для их применения необходимо перезагрузить сетевую подсистему выполнив команду /etc/init.d/network restart. Для выполнения команды необходимы права суперпользователя.

Начальная конфигурация аудиоподсистемы

По умолчанию, после установки в звуковой подсистеме отключены все каналы, и они должны быть включены вручную. Для этого можно воспользоваться командой:

amixer sset Master unmute

Подп. и дата

№ дубл

윋

B3.

Подп. и дата

Инв. № подл.

Более тонкая настройка звука возможна с использованием утилиты alsamixer.

Сброс настроек BIOS к заводским установкам

Для сброса настроек BIOS, сохраненных в энергонезависимой памяти, в состояние «по умолчанию», необходимо сразу после включения питания ПК-3 нажать и удерживать нажатой клавишу 'ESC' на клавиатуре терминала, подключенного к последовательному порту ПК-3, как указано в подразделе 6.1.

Изм.	Лист	№ докум.	Подп.	Дата

ЛЯЮИ.467444.021РЭ

⁻ перемычка не установлена по умолчанию

5.4 Замена батареи

Для замены литиевой батареи используйте такую же батарею или рекомендованную производителем для замены. Среди подходящих моделей – RENATA CR2032 или другие совместимые модели.

Ожидаемое время работы батареи приблизительно 5 лет при работе при комнатной температуре. Срок службы батареи зависит от рабочей температуры, а также от времени, которое ПК-3 находится в выключенном состоянии.

Рекомендуется заменять батарею через 3-4 года работы, не дожидаясь окончания ее срока службы.

Работы по установке батареи производятся на демонтированном ПК-3.

Для замены батареи выполните следующие действия:

- Убедитесь, что соблюдены требования безопасности, изложенные выше.
- С помощью крестовой отвертки открутите 12 винтов на дне корпуса, крепящих нижнюю крышку корпуса и печатную плату ПК-3 и снимите нижнюю крышку корпуса.
- Замените батарею. Соблюдайте полярность!
- Установите нижнюю крышку корпуса, убедитесь, что все отверстия совпали со стойками крепления печатной платы, скрепите корпус винтами.

Подп. и дата							
Инв. № дубл							
Вз. инв. №							
Подп. и дата							
Инв. № подл.	Изм.	Лист	№ докум.	Подп.	Дата	ЛЯЮИ.467444.021РЭ	Лист 25

6 Программа начального старта «BOOT» (BIOS)

6.1 Программа начального старта «ВООТ» (BIOS) ПК-3

Программа начального старта «BOOT» (BIOS) ПК-3 предназначена для:

- первоначального тестирования и инициализации аппаратных компонентов ПК-3;
- запуска операционных систем, предусмотренных для исполнения на ПК-3.

Общая схема работы BIOS состоит в следующем:

- старт всех центральных процессоров (ЦП) с точки запуска с зацикливанием всех ЦП, кроме ведущего, до разрешения продолжить работу от этого главного процессора;
- исполнение теста по включению питания или общему сбросу POST (Power On Self Test);
- инициализация диагностических устройств;
- сканирование и инициализация оперативной памяти;
- сканирование и инициализация PCI-устройств;
- инициализация устройств загрузки и файловых систем на них;
- инициализация клавиатуры и видеосистемы;
- организация диалогового интерфейса с пользователем;
- анализ конфигурационных параметров в энергонезависимой памяти (NVRAM) и в конфигурационном файле на одном из устройств загрузки
- загрузка файла с исполняемым кодом целевой программы, с одного из устройств загрузки;
- подготовка к передаче управления загруженному коду.
- передача управления и старт всех ожидающих процессоров в нормальном случае, либо останов в случае неисправной конфигурации аппаратуры.

Обеспечивается запуск основной операционной системы «Эльбрус».

Файлы кодов ОС могут быть расположены на жестких и флэш-дисках, на CD-ROM, на USB-накопителе или подкачиваться из локальной сети Ethernet по протоколу ATA over Ethernet (AoE).

Файлы кодов ОС на жестких и флэш-дисках и USB-накопителях должны храниться на разделе диска, размеченного как файловая система ext2 или ext3 с типом таблицы разделов MS-DOS. Файлы на CD-ROM хранятся в файловой системе ISO 9660.

Разметка дисков, предоставляемых сервером по протоколу АоЕ должна удовлетворять ранее описанным требованиям для дисков.

6.2 Диагностика и диалог

Программа начального старта выводит информационные сообщения в последовательный порт, а с момента инициализации видеокарты дублирует их на монитор.

После включения питания или перезагрузки ПК-3 программа начального старта начинает базовое тестирование и инициализацию доступной аппаратуры. По мере последовательного тестирования устройств выдаются информационные сообщения. В случае успешного тестирования выдается следующее сообщение и начинается обратный отсчет:

CPU#00: Autoboot in xx sec, PRESS ANY KEY TO DISABLE IT

Изм.	Лист	№ докум.	Подп.	Дата	

ЛЯЮИ.467444.021РЭ

Лист 26

Инв. № дубл

Подп. и дата

Вз. инв. №

Подп. и дата

пв. № подл.

Здесь хх – число оставшихся до начала работы секунд.

После завершения обратного отсчета произойдет запуск программы по установленным в энергонезависимой памяти и конфигурационном файле параметрам. Чтобы изменить параметры запуска, надо прервать отсчет нажатием клавиши пробела, войдя тем самым в диалоговый режим.

Для ввода может использоваться терминал, подключенный к последовательному порту и клавиатура, а для вывода - терминал, подключенный к последовательному порту и монитор.

Ввод и вывод производится через оба имеющихся последовательных порта в полудуплексном режиме. Т.е. ввод возможен через любой из них, а вывод идет в оба одновременно.

Для обмена информацией по последовательному порту, к ПК-3 должен быть подключен знаковый терминал или эмулятор терминала со следующими настройками:

скорость - 115200 бит/сек, кадр - 8 бит четность - нет, стоп-бит - 1, регулировка потока - нет.

Основной задачей BIOS является загрузка ОС Эльбрус.

Загрузку можно произвести по одной из четырех схем:

1) Автоматизированная загрузка:

Дождаться конца таймера обратного отсчета. В этом случае будет произведена загрузка заранее выбранной программы, с параметрами, хранящимися в энергонезависимой памяти либо в файле *boot.conf* (при его наличии) (метка, указанная как default; в соответствии с п. 6.5). Приоритетом обладает загрузка по параметрам, указанным в файле *boot.conf*. В этом случае из энергонезависимой памяти берется только значение номера устройства загрузки.

2) Прервать таймер обратного отсчета и нажать клавишу 's'. В этом случае загрузка произойдет по параметрам, взятым из энергонезависимой памяти. Содержимое файла *boot.conf* приниматься в расчет не будет.

Примечание - Значение параметра <u>command_string</u> не сохраняется в энергонезависимой памяти, поэтому для этого параметра будет установлено фиксированное значение. (в соответствии п. 6.3)

- 3) Прервать таймер обратного отсчета и, нажав клавишу 'c', изменить параметры, взятые из энергонезависимой памяти (в соответствии п. 6.3). Потом, нажав клавишу 's', загрузить программу.
- 4) Прервать таймер обратного отсчета и, войдя в диалог загрузки с использованием конфигурационного файла *boot.conf* ('b' основного режима или *#boot* расширенного), загрузить одну из меток файла *boot.conf* (в соответствии с п. 6.5)

6.3 Основной диалог

Основной диалог позволяет изменять основные параметры загрузки и старта программ. Основной диалог начинается с вывода сообщений

Изм.	Лист	№ докум.	Подп.	Дата	

Подп. и дата

Инв. № дубл

Вз. инв. №

Подп. и дата

Инв. № подл.

BOOT SETUP

Press command letter, or press 'h' to get help и приглашения

:

Запуск команд основного диалога осуществляется вводом следующих сообщений из одного символа - нажатием так называемых "горячих клавиш":

'h' - Вывод помощи по командам основного диалога 'c' - Режим изменения параметров загрузки и старта

'u' - Вывод существующих на данный момент параметров на монитор

'd' - Вывод имеющихся у ПК-3 дисков (устройств для загрузки) на монитор

'm' - Сохранение выбранных параметров в энергонезависимую память

'р' или 's' - Загрузка и старт выбранного файла с кодом программы 'b' - Режим старта с использованием конфигурационного файла

'`'или '~' - Вход в расширенный диалог

Команда 'с' изменяет параметры загрузки и старта. Сначала она выводит текущие параметры в виде:

CHANGE BOOT PARAMETERS

Current Settings:

drive_number: '0'
partition_number: '0'
command_string: "

filename: '/linux.e3m'

initrdfilename: "autoboot in: '0'

Подп. и дата

№ дубл

Инв.

윋

В3.

Подп. и дата

подл.

Инв. №

To advance to next setting press ENTER. To skip setting press ESC

Далее команда 'c' позволяет поочередно изменить выведенные параметры. Для изменения параметра нужно ввести его значение (строку для параметров <u>command_string</u>, <u>filename</u>, <u>initrdfilename</u> и число для прочих параметров) и нажать клавишу 'Enter'. Нажатие клавиши 'Enter' без значения устанавливает параметром пустую строку или ноль соответственно. Нажатие клавиши 'Esc' оставляет прежнее значение параметра.

Для облегчения ввода параметров <u>filename</u> и <u>initrdfilename</u> поддержан поиск по начальным буквам имени файла:

Если в разделе, заданном (<u>drive_number</u>, <u>partition_number</u>), существует файловая система типа ext2 (или ext3), или ISO 9660 для CD_ROM, то, нажав клавишу 'Tab' в поле ввода параметра <u>filename</u> или <u>initrdfilename</u>, можно получить оглавление корневого каталога. Далее, вводя слоги файловых имен по частям и нажимая клавишу 'Tab', можно получить в поле ввода основной слог полностью, и, таким образом, удобно выбрать нужный файл.

Параметры загрузки и старта:

drive number – номер устройства загрузки

partition number – номер раздела на выбранном устройстве загрузки

Изм.	Лист	№ докум.	Подп.	Дата

Примечания

1 Содержимое параметра <u>command_string</u> не сохраняется в энергонезависимой памяти. При каждой загрузке для этого параметра будет установлено фиксированное значение "root=/dev/hda3 console=tty0 console=ttyS0,115200". В случае, если необходима автоматизированная загрузка с использованием этого параметра, со значением отличным от фиксированного — рекомендуется пользоваться схемами запуска с использованием конфигурационного файла boot.conf.

2 Местонахождение файлов, используемых BIOS.

Под полным именем файла подразумевается путь к файлу и собственно имя файла, т.е. строка вида "/boot/linux.0"

При вводе полного имени файла следует учитывать, что под корнем "/" понимается корень выставленного раздела <u>partition_number</u>. ОС может видеть этот-же файл по другому пути, если корень раздела <u>partition_number</u> будет смонтирован во внутреннюю папку файловой системы. Обычно корень раздела, используемого BIOS, смонтирован в папку "/boot". Для приведенного выше примера полное имя файла в ОС будет "/boot/boot/linux.0"

Команда 'u' обеспечивает вывод параметров загрузки и старта.

Команда 'm' обеспечивает сохранение измененных параметров в энергонезависимую память.

Примечание - Содержимое параметра <u>command_string</u> не сохраняется в энергонезависимой памяти.

Команды 'p' или 's' обеспечивают загрузку и старт выбранного файла с кодом программы.

Команда 'b' инициирует диалог загрузки с использованием конфигурационного файла boot.conf (аналогично команде boot расширенного диалога). Файл ищется на диске drive_number. Параметр drive_number хранится в энергонезависимой памяти либо изменяется командой 'c'. Если диска drive_number нет или в его корневом разделе нет файла boot.conf, команда 'b' не выполняет никаких действий.

Описание диалога загрузки с использованием boot.conf смотри в п. «Диалог загрузки с использованием файла *boot.conf*».

Команды '`'и '~' обеспечивают вход в расширенный диалог.

6.4 Расширенный диалог

Расширенный диалог позволяет:

- устанавливать и изменять пароль;

Изм.	Лист	№ докум.	Подп.	Дата	

ЛЯЮИ.467444.021РЭ

Лист 29

Подп. и дата

Инв. № дубл

Вз. инв. №

Подп. и дата

Инв. № подл.

подл. Подп. и дата Вз. инв. № Инв. № дубл Подп. и дата

Инв. №

- устанавливать специфические для функционирования машины флаги;
- перезагружать ПК-3;
- загружать целевые программы с использованием конфигурационного файла boot.conf.

Расширенный диалог активируется командами '`' или '~' основного диалога.

При входе в расширенный диалог появляется вывод вида

ENHANCED CMD MODE

Enter command, 'help' to get help, or Esc to exit

и появляется приглашение

#

Выход из него в основной диалог выполняется при нажатии клавиши 'Esc'.

Команды расширенного диалога состоят из одного или нескольких слов, определяющих задаваемый параметр, и собственного этого параметра. Исполнение введенной команды производится при нажатии клавиши 'Enter'.

Для облегчения ввода этих команд поддержан поиск по начальным буквам слов команды и клавише 'Таb'. Например, для ввода команды *help*, выводящей список всех доступных команд расширенного диалога, достаточно набрать 'h' и нажать 'Таb'.

При вводе и редактировании команд поддержана возможность использования клавиш 'Home', 'End', управляющих стрелок влево-вправо для перемещения курсора, стрелок вверх-вниз для выбора ранее набранных команд.

Расширенный диалог является самодокументированным: при вводе какой-либо команды и нажатии 'Таb' — будет выведена краткая справка по команде.

Ниже дается описание основных команд расширенного диалога.

Команда *help*

help - выводит помощь и список всех имеющихся команд

Команда boot

boot [drive_number] - инициирует диалог загрузки с использованием конфигурационного файла boot.conf (п. «Диалог загрузки с использованием файла boot.conf»).

Команды set и get

Команды set и get устанавливают и показывают значение параметров.

Команда *set* состоит из одного или нескольких слов, определяющих устанавливаемый параметр и собственного значения этого параметра. Большинство команд *set* имеет парную команду *get*, которая обеспечивает вывод текущего значения соответствующего параметра. Команда *get* состоит из одного или нескольких слов, определяющих считываемый параметр. Ниже приводится описание этих команд.

set boot_device < drive_number > - устанавливает устройство загрузки (действие команды аналогично заданию drive_number из основного диалога в процессе исполнения команды 'c')

get boot device - выводит текущее устройство загрузки.

get drives - выводит информацию об обнаруженных дисков и об имеющихся на них файловых системах. Пример вывода:

·					
Изм.	Лист	№ докум.	Подп.	Дата	

ЛЯЮИ.467444.021РЭ

get drives

CPU#00: Drive [5]: IDE - PCI BUS[0]:DEV[7]:FUNC[1], PIIX4 IDE Secondary Slave.

CPU#00: Partition [0]: Linux EXT3 CPU#00: Partition [2]: Whole disk

Для просмотра каталогов файловых систем в обнаруженных разделах следует выйти в основной диалог и использовать команду 'с' этого диалога.

set password enable - устанавливает новый пароль на установку параметров загрузки и запуск загрузки файла на исполнение. Эта команда инициирует диалог, позволяющий сделать попытку установки пароля не более трех раз. В случае ошибочного ввода пароля три раза подряд, машина блокируется. Повторить попытку ввода пароля можно будет только после аппаратной перезагрузки (нажатием кнопки reset или выкл/вкл питания). Диалог этой команды и последующих команд set является самодокументированным. В случае успешной установки выдается сообщение вида

Password succesfully enabled

Появление других сообщений говорит о невыполнении команды по указанной в сообщении причине.

set password disable - отменяет пароль. В случае успешной отмены выдается сообщение вида

Password successfully disabled

set password change - изменяет пароль. В случае успешной отмены выдается сообщение вида

Password successfully changed

 $set\ password\ mode < 1 \mid 0 >$ задает защищаемые паролем действия:

0 - только изменение параметров загрузки.

1 - загрузку файла на исполнение и изменение параметров загрузки.

get password status - выводит значение статуса пароля (включен - выключен) и защищаемые паролем действия. Пример выдачи:

set password mode 1

get password status

Status: Disabled

№ дубл

윋

B3.

Подп. и дата

подл.

Инв. №

Check mode: Load and Modify

set password mode 0

get password status

Status: Disabled Check mode: Modify

set $test mem < 0 \mid 1 >$ - устанавливает флаг тестирования оперативной памяти.

0 — выключено тестирование памяти после каждого старта машины

Изм.	Лист	№ докум.	Подп.	Дата	

ЛЯЮИ.467444.021РЭ

get test mem - выводит значение этого флага тестирования оперативной памяти.

set drive_init_delay < delay> - устанавливает задержку перед началом инициализации дисков. Может использоваться в случае, если имеющиеся в ПК-3 жесткие диски не успевают раскрутится. Чаще всего, показателем этого является то, что файловая система на дисках не видна по включению питания, но появляется при перезагрузке.

<<u>delay</u>> - значение задержки в секундах. Поддерживаются значения: 0, 1, 2, 3, 6, 10, 20, 30.

get drive init delay - выводит текущее значение задержки.

set memory limit < <u>size</u>> - устанавливает программное ограничение на объем определяемой памяти. Это ограничение будет также передаваться и в ОС.

<<u>size</u>> - желаемый объем ограничения памяти. 0 - отмена ограничения. Установленное ограничение вступит в силу после перезагрузки.

get memory limit - выводит текущее значение ограничения на объем найденной памяти.

get memory regions - выводит карту памяти ПК-3

set serial_num <<u>works_num</u>> - позволяет установить серийный номер машины (из трех цифр)

<<u>works_num</u>> - заводской номер машины (8 цифр), из которого будет получен серийный.

get serial num - выводит установленный серийный номер машины.

Команда reset

reset - производит перезагрузку машины.

Команда set mb version

set mb_version <code> - устанавливает код, идентифицирующий специфику конструкции данной материнской платы - разводку прерываний шины PCI и номер слота PCI, в котором находится южный мост. В соответствии с этой информацией выполняется конфигурирование инициализация PCI устройств. Далее эта информация передается загружаемой операционной системе. После смены значения параметра требуется перезагрузка.

get mb version — выводит код идентификации материнской платы.

ВНИМАНИЕ: ПК-3 ПОСТАВЛЯЮТСЯ С ПРЕДУСТАНОВЛЕННЫМ ПАРАМЕТРОМ mb_version. ОБЫЧНО ОН НЕ ПОДЛЕЖИТ ЗАМЕНЕ.

Остальные команды используются для тонкой настройки машины и, в общем случае, используются только на заводе-изготовителе.

Изм.	Лист	№ докум.	Подп.	Дата	

ЛЯЮИ.467444.021РЭ

Лист 32

Подп. и дата

Инв. № дубл

Вз. инв. №

Подп. и дата

Инв. № подл.

6.5 Диалог загрузки с использованием файла boot.conf

Команда boot [boot_conf_drive] расширенного диалога, либо 'b' основного, инициирует диалог загрузки с использованием конфигурационного файла boot.conf (см. далее), который должен лежать в нулевом разделе диска с номером boot_conf_drive в корневом разделе, т. е. иметь адрес '/boot.conf'. Если команда была набрана без задания параметра boot_conf_drive, то вместо него будет использован параметр drive_number из энергонезависимой памяти.

Диалог выводит приглашение вида

boot#

После вывода данного приглашения можно ввести название метки, заданной в файле boot.conf, для запуска по параметрам из данной метки либо нажать Enter, для запуска по параметрам из метки, заданной как default.

Для задания загружаемого файла по такому конфигурационному файлу необходимо:

- ввести имя метки (нажатие 'Tab' выведет список меток или дополнит название по первым буквам).
 - подтвердить имя метки, загрузку и запуск файла нажатием 'Enter'.

При нажатии 'Enter', без указания имени метки, программа начального старта попробует найти метку, указанную как default, и загрузить её.

При загрузке по истечению срока обратного отсчета и наличии в корне диска файла boot.conf программа начального старта попробует найти метку, указанную как default, и загрузить её.

Вводимое имя метки должно соответствовать одной из меток, указанных в параметре <u>label</u>=... конфигурационного файла - *image* или *vmlinux* в показанном примере.

В целом, команда *boot* [<u>drive_number</u>] расширенного диалога аналогична команде основного диалога 'b' и отличается тем, что используется явно заданный ее параметром <u>drive_number</u> диск. Если этого диска нет или в его корневом разделе нет файла *boot.conf*, команда не выполняет никаких действий.

Структура файла boot.conf

Стандартный файл boot.conf должен иметь вид:

default=image timeout=10

#first label

label=image
partition=0
drive=0
image=/boot/image
cmdline=first cmdline

#second label

Инв. № подл.	

Подп. и дата

№ дубл

Инв.

윋

В3.

Подп. и дата

Изм.	Лист	№ докум.	Подп.	Дата

```
label=vmlinux
partition=0
drive=1
image=/boot/vmlinux
cmdline=second cmdline
```

Таким образом, основой организации файла *boot.conf* являются метки (label). Каждая метка содержит в себе набор параметров, используемых для загрузки.

В настоящее время имена параметров *boot.conf* и основного диалога не одинаковы. Следует учитывать следующее соответствие (слева – имя параметра основного диалога, справа - соответствующее ему имя параметра *boot.conf*):

```
drive_number - drive
partition_number - partition
command_string - cmdline
filename - image
initrdfilename - initrdfilename
autoboot in - timeout
```

Значение времени задержки перед стартом загружаемой программы <u>timeout</u> является общим для всех меток и указывается в начале файла.

ВНИМАНИЕ: КАЖДЫЙ ПАРАМЕТР ВНУТРИ МЕТКИ ДОЛЖЕН БЫТЬ ОПРЕДЕЛЕН ТАБУЛЯЦИЕЙ, НАПРИМЕР:

```
label=image
<tab>partition=0
```

• • •

BIOS не дает возможность менять содержимое конфигурационного файла, таким образом, файл должен быть настроен заранее, например можно сначала загрузить операционную систему по гарантированно рабочим параметрам, и там исправить/дополнить boot.conf..

При отсутствии какого-либо параметра в метке (<u>partition</u>, <u>image</u>) параметр будет браться из энергонезависимой памяти.

Инв. № подп. и дата Вз. инв. № Инв. № дубл Подп. и дата

Изм.	Лист	№ докум.	Подп.	Лата

7.1 Управление температурным режимом

Процессоры 1891ВМ11Я находятся в напряженном тепловом режиме. Это требует специальных мер для поддержания температуры кристалла процессора в пределах допустимых значений.

Структуру управления температурным режимом ПК-3 можно представить в виде определенных функций, целью которых является защитить процессор. Использование схем термоконтроля позволяет процессору поддерживать безопасную рабочую температуру с помощью специальных программных драйверов и процедур обработки прерываний.

Функции термозащиты процессора:

Технология «Catastrophic shutdown detector» в случае отказа системы охлаждения обеспечивает отключение процессора, если температуру кристалла не удается удержать любым из средств пассивного или активного регулирования температуры равной 105°С. Эта функция всегда активна, чтобы обеспечить защиту процессора в любом случае. После срабатывания «Catastrophic shutdown detector» процессорный модуль переходит в режим Soft-Off (S5). Для повторного старта модуля необходимо произвести цикл включения-выключения питания. Если при этом перегрев не устранен, то «Catastrophic shutdown detector» сработает снова.

Внешний температурный монитор (LM96163C) предназначен для сбора информации о температурах поверхности платы и ядра КПИ2. Эти данные могут быть использованы управляющей программой для того, чтобы предпринять необходимые меры. При дальнейшем повышении температуры до критического значения (+110 °C для процессора) последует аппаратное отключение ядра микропроцессора.

Чтение значений температур производится скриптом:

/mcst/bin/CNTR TMPRT -da -t1

Где параметр — t указывает интервал времени для повторного запроса. В данном случае — 1 с.

Если ПК-3 работает в нормальных для него условиях с достаточной циркуляцией окружающего воздуха, то в использовании функций управления температурным режимом нет необходимости. Но когда параметры окружающей среды не являются оптимальными, необходимо использовать функции управления температурным режимом для обеспечения стабильной работы.

ПРЕДУПРЕЖДЕНИЕ

Поскольку ПАО «ИНЭУМ им. И.С. Брука» не несет ответственности за повреждения ПК-3 и другого оборудования, вызванные перегревом процессора, то пользователям ПК-3 и разработчикам систем на его основе настоятельно рекомендуется убедиться в соответствии условий эксплуатации допустимым для ПК-3 пределам.

7.2 Параметры входа в ОС Эльбрус

Для входа в диалоговый режим ОС Эльбрус необходимы имя пользователя (login) и пароль.

Login по умолчанию – root

Пароль по умолчанию – f2line. (с точкой в конце)

Щ	
Инв. № дубл	
Вз. инв. №	
Подп. и дата	
Инв. № подл.	

одп. и дата

Изм.	Лист	№ докум.	Подп.	Дата

8 Транспортирование, распаковка и хранение

8.1 Транспортирование

ПК-3 должны транспортироваться в отдельной упаковке предприятия-изготовителя, состоящей из индивидуального антистатического пакета и картонной коробки в закрытом транспорте (автомобильном, железнодорожном, авиационном в отапливаемом и герметизированном отсеке).

ПК-3 в упаковке должны транспортироваться в соответствии с правилами, перевозки грузов, действующими на каждом виде транспорта.

Во время погрузочно-разгрузочных работ и транспортирования, упакованные ПК-3 не должны подвергаться толчкам, падениям, ударам, воздействию атмосферных осадков.

8.2 Распаковка

Распаковку ПК-3, находившихся при температуре ниже 0 °C, необходимо производить в отапливаемом помещении, предварительно выдержав их в не распакованном виде в нормальных климатических условиях в течение 24 ч.

Запрещается размещение упакованных ПК-3 вблизи источника тепла.

При распаковке ПК-3 необходимо соблюдать все меры предосторожности, обеспечивающие их сохранность, а также товарный вид потребительской тары предприятия-изготовителя.

При распаковке необходимо проверить ПК-3 на отсутствие внешних механических повреждений после транспортирования.

8.3 Хранение

Хранение ПК-3 должно осуществляться в отапливаемых и не отапливаемых закрытых помещениях в соответствии с ГОСТ В 9.003-80 (место хранения 3, условия хранения 3)

Подп. и дата						B 7.005 00 (Meeto Apanellan 5, yesloban Apanellan 5)
Инв. № дубл						
Вз. инв. №						
Подп. и дата						
Инв. № подл.	Изм.	Лист	№ докум.	Подп.	Дата	ЛЯЮИ.467444.021РЭ 36

Лист регистрации изменений

Изм.	Номера листов (страниц)				Всего	$N_{\underline{0}}$	Входя-	Под-	Дата
	Из- ме- нен- ных	Заме-	Но-	Аннули- рован- ных	листов (стр.) в доку- менте	докумен- та	щий № сопро- водит. докум. и дата	пись	
1		Bce			37	ЛЯЮИ.080-18			17.12.1
2		Bce			37	ЛЯЮИ.005-19			28.01.1
3		Bce			37	ЛЯЮИ.060-19			28.11.1

Дата

Подп. и дата

Инв. № дубл

Вз. инв. №

Подп. и дата

ЛЯЮИ.467444.021РЭ